Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Front Immunol ; 14: 1195299, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-20239018

RESUMEN

Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has rapidly spread around the globe. With a substantial number of mutations in its Spike protein, the SARS-CoV-2 Omicron variant is prone to immune evasion and led to the reduced efficacy of approved vaccines. Thus, emerging variants have brought new challenges to the prevention of COVID-19 and updated vaccines are urgently needed to provide better protection against the Omicron variant or other highly mutated variants. Materials and methods: Here, we developed a novel bivalent mRNA vaccine, RBMRNA-405, comprising a 1:1 mix of mRNAs encoding both Delta-derived and Omicron-derived Spike proteins. We evaluated the immunogenicity of RBMRNA-405 in BALB/c mice and compared the antibody response and prophylactic efficacy induced by monovalent Delta or Omicron-specific vaccine with the bivalent RBMRNA-405 vaccine in the SARSCoV-2 variant challenge. Results: Results showed that the RBMRNA-405 vaccine could generate broader neutralizing antibody responses against both Wuhan-Hu-1 and other SARS-CoV-2 variants, including Delta, Omicron, Alpha, Beta, and Gamma. RBMRNA-405 efficiently blocked infectious viral replication and lung injury in both Omicron- and Delta-challenged K18-ACE2 mice. Conclusion: Our data suggest that RBMRNA-405 is a promising bivalent SARS-CoV-2 vaccine with broad-spectrum efficacy for further clinical development.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Ratones , SARS-CoV-2 , COVID-19/prevención & control , Ratones Endogámicos BALB C , ARN Mensajero , Vacunas Combinadas , Vacunas de ARNm
2.
Vaccines (Basel) ; 10(10)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2071929

RESUMEN

There is an urgent need for a broad-spectrum and protective vaccine due to the emergence and rapid spreading of more contagious SARS-CoV-2 strains. We report the development of RBMRNA-176, a pseudouridine (Ψ) nucleoside-modified mRNA-LNP vaccine encoding pre-fusion stabilized trimeric SARS-CoV-2 spike protein ectodomain, and evaluate its immunogenicity and protection against virus challenge in mice and nonhuman primates. A prime-boost immunization with RBMRNA-176 at intervals of 21 days resulted in high IgG titers (over 1:819,000 endpoint dilution) and a CD4+ Th1-biased immune response in mice. RBMRNA-176 vaccination induced pseudovirus-neutralizing antibodies with IC50 ranging from 1:1020 to 1:2894 against SARS-CoV-2 spike pseudotyped wild-type and variant viruses, including Alpha, Beta, Gamma, and Kappa. Moreover, significant control of viral replication and histopathology in lungs was observed in vaccinated mice. In nonhuman primates, a boost given by RBMRNA-176 on day 21 after the prime induced a persistent and sustained IgG response. RBMRNA-176 vaccination also protected macaques against upper and lower respiratory tract infection, as well as lung injury. Altogether, these findings support RBMRNA-176 as a vaccine candidate for prevention of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA